Durée 50 minutes Calculatrice en mode Examen

Exercice 1 [15 points]

Une étude sur le nombre de clients d'une entreprise montre que :

- d'une année sur l'autre le nombre de client baisse de 20%,
- grâce à une campagne de publicité, le 31 décembre de chaque année l'entreprise gagne 25 000 nouveaux clients.

Au 1^{er} janvier 2020 l'entreprise possède 200 000 clients.

On note (u_n) la suite qui modélise le nombre de milliers de clients au $\mathbf{1}^{\text{er}}$ Janvier de l'année (2020+n); ainsi $u_0=200$.

- **1.** Justifier que, pour tout entier naturel n, on a : $u_{n+1} = 0.8u_n + 25$.
- **2.** Déterminer u_1 et $u_2:(u_n)$ est-elle arithmétique, géométrique, ni l'un ni l'autre ?
- ${\bf 3}$. Le programme Python suivant demande à l'utilisateur d'entrer un entier naturel n puis affiche la valeur de u_n :

```
01 U=200
02 n=int(input("n="))
03 for k in range(0, ...
04     U= ...
05 print(U)
```

Écrire sur la copie, en les complétant, les ligne 03 et 04.

- **4.** On considère la suite (v_n) définie pour tout entier naturel n, par : $v_n = u_n$ -125.
 - **a.** Déterminer v_0 .
 - **b**. Montrer que la suite (v_n) est géométrique et préciser sa raison.
 - **c.** Exprimer v_n puis u_n en fonction de n.
- **5.** Déterminer le sens de variation de la suite (u_n) : que peut-on en déduire pour le nombre de clients de cette entreprise ?
- **6.** L'entreprise réalise des bénéfices si, et seulement si, elle possède au moins 120 000 clients : va-t-elle toujours réaliser des bénéfices.

Exercice 2 [5 points]

On pose $u_0 = 7$ et, pour tout entier naturel $n : u_{n+1} = u_n + 4n + 5$.

Pour tout $n \in \mathbb{N}$, on pose : $v_n = u_n - 2n^2$.

- 1. Démontrer que (v_n) est arithmétique, préciser son premier terme et sa raison.
- **2.** Exprimer v_n puis u_n en fonction de n.
- **3.** Déterminer un entier naturel n, au choix, pour lequel $u_n > 2 \times 10^{300}$.

BONUS** [2 points]

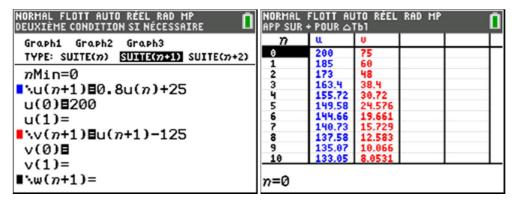
Pour tout $n \in \mathbb{N}^*$ on note $S_n = u_1 + \dots + u_n$ la somme des termes de u_1 à u_n avec :

$$u_n = \frac{1}{n(n+1)} + \frac{1}{2^n}$$

Montrer que pour tout $n \in \mathbb{N}^*$, on a : $S_n < 2$.

Corrigé

Exercice 1



- d'une année sur l'autre le nombre de client baisse de 20%
- le 31 décembre de chaque année l'entreprise gagne 25 000 nouveaux clients

Au 1^{er} janvier 2020 : 200 000 clients

 (u_n) modélise le nombre de milliers de clients au 1 er Janvier de l'année (2020+n), $u_0=$ 200

1. Justifier que, pour tout entier naturel n, on a : $u_{n+1} = 0.8u_n + 25$.

On se place au début de l'année 2000+n : il y a u_n milliers de clients.

- lors de cette année, l'entreprise perd 20% de ses clients, soit $\frac{20}{100}u_n=0,2u_n$ milliers de clients, donc il restera $u_n-0,2u_n=0,8u_n$ milliers de clients.
- le 31 décembre 25 000 nouveaux clients arrivent soit 25 milliers de clients donc l'entreprise aura $0.8u_n + 25$ milliers de clients au 1^{er} janvier 2000+n.

Or, au 1^{er} janvier 2000+n+1 le nombre de clients en milliers est u_{n+1} donc : $u_{n+1}=0.8u_n+25$. Conclusion : pour tout $n \in \mathbb{N}$, $u_{n+1}=0.8u_n+25$.

2. Déterminer u_1 et $u_2:(u_n)$ est-elle arithmétique, géométrique, ni l'un ni l'autre ?

$$u_1 = 0.8u_0 + 25 = 0.8 \times 200 + 25 = 160 + 25 = 185$$

 $u_2 = 0.8u_1 + 25 = 0.8 \times 185 + 25 = 148 + 25 = 173$

Résumons : $u_1 = 185$ et $u_2 = 173$.

On a :
$$u_1 - u_0 = 200 - 185 = 15$$
 et $u_2 - u_1 = 185 - 173 = 12$.

On constate que $u_2 - u_1 \neq u_1 - u_0$ donc la suite (u_n) n'est pas arithmétique.

On a :
$$\frac{u_1}{u_0} = \frac{185}{200} = \frac{37}{40}$$
 et $\frac{u_2}{u_1} = \frac{173}{185}$

On constate que : $\frac{u_1}{u_0} \neq \frac{u_2}{u_1}$ donc la suite (u_n) n'est pas géométrique.

 $\underline{\mathsf{Conclusion}}$: la suite (u_n) n'est ni arithmétique, ni géométrique.

3. Le programme Python suivant demande à l'utilisateur d'entrer un entier naturel n puis affiche la valeur de u_n :

03 for
$$k$$
 in range(0, n):

- 4. $\forall n \in \mathbb{N}, v_n = u_n 125$
 - a. Déterminer v_0 .

Pour n=0 on obtient : $v_0=u_0-125=200-125=75$; $v_0=75$.

b. Montrer que la suite (v_n) est géométrique et préciser sa raison.

Soit $n \in \mathbb{N}$, on a :

$$v_{n+1} = u_{n+1} - 125 = 0.8u_n + 25 - 125 = 0.8u_n - 100 = 0.8\left(u_n - \frac{100}{0.8}\right)$$

$$= 0.8(u_n - 125) = 0.8 \times v_n$$

Pour tout $n \in \mathbb{N}$, $v_{n+1} = 0.8 \times v_n$ et 0.8 est une constante donc la suite (v_n) est géométrique de raison 0.8.

Autre rédaction (tolérée en première uniquement) :

Soit $n \in \mathbb{N}$, on a :

$$\frac{v_{n+1}}{v_n} = \frac{u_{n+1} - 125}{u_n - 125} = \frac{0.8u_n + 25 - 125}{u_n - 125} = \frac{0.8u_n - 100}{u_n - 125} = \frac{0.8\left(u_n - \frac{100}{0.8}\right)}{u_n - 125} = \frac{0.8\left(u_n - \frac{100}{0.8}\right)}{u_n - 125} = \frac{0.8\left(u_n - \frac{100}{0.8}\right)}{u_n - 125}$$

Pour tout $n \in \mathbb{N}$, $\frac{v_{n+1}}{v_n} = 0.8$ et 0.8 est une constante donc (v_n) est géométrique de raison 0.8.

c. v_n puis u_n en fonction de n

Soit $n \in \mathbb{N}$. On sait que (v_n) est géométrique donc : $v_n = v_0 \times q^n$ (cours), or $v_0 = 75$ et q = 0.8 donc : $v_n = 75 \times 0.8^n$. Or, $v_n = u_n - 125$ donc $75 \times 0.8^n = u_n - 125$, autrement dit : $u_n = 75 \times 0.8^n + 125$.

Conclusion: pour tout $n \in \mathbb{N}$, $u_n = 75 \times 0$, $8^n + 125$.

5. Déterminer le sens de variation de (u_n) et conséquence pour le nombre de clients.

Soit $n \in \mathbb{N}$, on a :

$$u_{n+1} - u_n = 75 \times 0.8^{n+1} + 125 - (75 \times 0.8^n + 125) = 75 \times 0.8^n \times 0.8 - 75 \times 0.8^n \times 1$$

= $75 \times 0.8^n \times (0.8 - 1) = -0.2 \times 75 \times 0.8^n = -15 \times 0.8^n$

Pour tout $n \in \mathbb{N}$, $u_{n+1} - u_n = -15 \times 0.8^n$.

Or, -15 < 0 et pour tout $n \in \mathbb{N}$, $0.8^n > 0$ donc : $-15 \times 0.8^n < 0$, autrement dit : $u_{n+1} - u_n < 0$.

Pour tout $n \in \mathbb{N}$, $u_{n+1} - u_n < 0$ donc (u_n) est (strictement) décroissante. Conséquence : le nombre de clients va toujours diminuer d'une année sur l'autre.

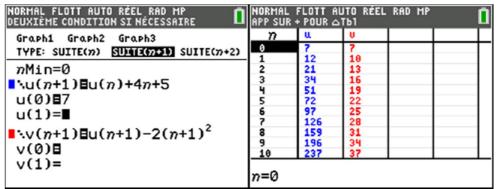
6. L'entreprise réalise des bénéfices si, et seulement si, elle possède au moins 120 000 clients : va-t-elle toujours réaliser des bénéfices.

Soit $n \in \mathbb{N}$, on a : $0.8^n > 0$ et 75 > 0 donc $75 \times 0.8^n > 0$ puis en ajoutant 125 à chaque membre : $75 \times 0.8^n + 125 > 125$, c'est-à-dire : $u_n > 125$.

Pour tout $n \in \mathbb{N}$, $u_n > 125$ donc le nombre de clients ne descendra jamais en dessous de 125~000 et comme 125~000 > 120~000 on en déduit que **l'entreprise réalisera toujours des bénéfices**.

Exercice 2

$$u_0=7$$
 et $\forall n\in\mathbb{N}, u_{n+1}=u_n+4n+5$, $v_n=u_n-2n^2$.



1. Démontrer que (v_n) est arithmétique, préciser son premier terme et sa raison.

$$\begin{split} v_0 &= u_0 - 2(0)^2 = 7 - 0 = 7 \\ \text{Soit } n \in \mathbb{N}, \text{ on a} \\ v_{n+1} - v_n \\ &= u_{n+1} - 2(n+1)^2 - (u_n - 2n^2) \\ &= u_n + 4n + 5 - 2(n^2 + 2n + 1) - u_n + 2n^2 \\ &= u_n + 4n + 5 - 2n^2 - 4n - 2 - u_n + 2n^2 \\ &= 3 \end{split}$$

Pour tout $n \in \mathbb{N}$, $v_{n+1} - v_n = 3$ et 3 est une constante donc (v_n) est arithmétique de raison 3.

Conclusion

La suite (v_n) est arithmétique de raison 3 et de premier terme $v_0 = 7$.

2. Exprimer v_n en fonction de n.

Soit $n \in \mathbb{N}$, on a : $v_n = v_0 + nr$ (cours), or $v_0 = 7$ et r = 3 donc $v_n = 7 + 3n$.

Conclusion : $\forall n \in \mathbb{N}, v_n = 3n + 7$.

3. En déduire u_n en fonction de n.

Soit $n \in \mathbb{N}$.

On a : $v_n = u_n - 2n^2$, or on a montré en **b.** que $v_n = 3n + 7$, donc $3n + 7 = u_n - 2n^2$, autrement

 $dit: 3n + 7 + 2n^2 = u_n.$

Conclusion : $\forall n \in \mathbb{N}, u_n = 2n^2 + 3n + 7.$

Vérification

Pour n = 2, la formule donne : $u_2 = 2(2)^2 + 3(2) + 7 = 2 \times 4 + 6 + 7 = 8 + 6 + 7 = 21$

4. Déterminer un entier naturel n, au choix, pour lequel : $u_n > 2 \times 10^{300}$.

Méthode 1

On a, pour tout $p \in \mathbb{N}$, $u_p = 2p^2 + 3p + 7 = p + 2p^2 + 2p + 7 > p$.

Si $p \geqslant 2 \times 10^{300}$, alors $u_p > p \geqslant 2 \times 10^{300} \ u_p > 2 \times 10^{300} \ {\rm donc} \ {\pmb n} = {\pmb 2} \times {\pmb 10}^{300} \ {\bf convient}.$

Méthode 2

Posons $n = 10^{150}$, alors $n^2 = (10^{150})^2 = 10^{150 \times 2} = 10^{300}$ donc $2n^2 > 2 \times 10^{300}$.

Or, $u_n = 2n^2 + 3n + 7 > 2n^2$ donc $u_n > 2 \times 10^{300}$.

Conclusion : $n = 10^{150}$ convient.

D'autres méthodes sont possibles.

BONUS

Pour tout $n\in\mathbb{N}^*$ on note $S_n=u_1+\cdots+u_n$ la somme des termes de u_1 à u_n avec :

$$u_n = \frac{1}{n(n+1)} + \frac{1}{2^n}$$

Montrer que pour tout $n \in \mathbb{N}^*$: $S_n < 2$.

Soit $n \in \mathbb{N}^*$, on a :

$$\frac{1}{n(n+1)} = \frac{n+1-n}{n(n+1)} = \frac{n+1}{n(n+1)} - \frac{n}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$$

et:

$$\frac{1}{2^n} = \left(\frac{1}{2}\right)^n$$

On a:

$$S_n = u_1 + u_2 + \dots + u_n = \frac{1}{1} - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \dots + \frac{1}{n} - \frac{1}{n+1} + \left(\frac{1}{2}\right)^1 \times \frac{1 - \left(\frac{1}{2}\right)^n}{1 - \frac{1}{2}}$$
$$= 1 - \frac{1}{n+1} + 1 - \left(\frac{1}{2}\right)^n = 2 - \frac{1}{n+1} - \left(\frac{1}{2}\right)^n < 2$$

Conclusion: $\forall n \in \mathbb{N}^*, S_n < 2$.